A lower bound for the determinantal complexity of a hypersurface

نویسندگان

  • Jarod Alper
  • Tristram Bogart
  • Mauricio Velasco
چکیده

We prove that the determinantal complexity of a hypersurface of degree d > 2 is bounded below by one more than the codimension of the singular locus, provided that this codimension is at least 5. As a result, we obtain that the determinantal complexity of the 3×3 permanent is 7. We also prove that for n > 3, there is no nonsingular hypersurface in Pn of degree d that has an expression as a determinant of a d×d matrix of linear forms while on the other hand for n ≤ 3, a general determinantal expression is nonsingular. Finally, we answer a question of Ressayre by showing that the determinantal complexity of the unique (singular) cubic surface containing a single line is 5.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Depth-4 Lower Bounds, Determinantal Complexity: A Unified Approach

Tavenas has recently proved that any nO(1)-variate and degree n polynomial in VP can be computed by a depth-4 ΣΠ[O( p n)]ΣΠ[ p n] circuit of size 2O( p n log n) [Tav13]. So to prove VP 6= VNP, it is sufficient to show that an explicit polynomial ∈ VNP of degree n requires 2ω( p n log n) size depth-4 circuits. Soon after Tavenas’s result, for two different explicit polynomials, depth-4 circuit s...

متن کامل

Bi-polynomial rank and determinantal complexity

The permanent vs. determinant problem is one of the most important problems in theoretical computer science, and is the main target of geometric complexity theory proposed by Mulmuley and Sohoni. The current best lower bound for the determinantal complexity of the d by d permanent polynomial is d/2, due to Mignon and Ressayre in 2004. Inspired by their proof method, we introduce a natural rank ...

متن کامل

Bearing Capacity of Strip Footings near Slopes Using Lower Bound Limit Analysis

Stability of foundations near slopes is one of the important and complicated problems in geotechnical engineering, which has been investigated by various methods such as limit equilibrium, limit analysis, slip-line, finite element and discrete element. The complexity of this problem is resulted from the combination of two probable failures: foundation failure and overall slope failure. The curr...

متن کامل

A Single Machine Sequencing Problem with Idle Insert: Simulated Annealing and Branch-and-Bound Methods

  In this paper, a single machine sequencing problem is considered in order to find the sequence of jobs minimizing the sum of the maximum earliness and tardiness with idle times (n/1/I/ETmax). Due to the time complexity function, this sequencing problem belongs to a class of NP-hard ones. Thus, a special design of a simulated annealing (SA) method is applied to solve such a hard problem. To co...

متن کامل

A Survey on Complexity of Integrity Parameter

Many graph theoretical parameters have been used to describe the vulnerability of communication networks, including toughness, binding number, rate of disruption, neighbor-connectivity, integrity, mean integrity, edgeconnectivity vector, l-connectivity and tenacity. In this paper we discuss Integrity and its properties in vulnerability calculation. The integrity of a graph G, I(G), is defined t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Foundations of Computational Mathematics

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017